Project Title	Funding	Strategic Plan Objective	Institution	
Intranasal oxytocin for the treatment of children and adolescents with autism spectrum disorders (ASD)	\$801,970	Q4.S.C	Holland Bloorview Kids Rehabilitation Hospital	
Receptive vocabulary knowledge in low-functioning autism as assessed by eye movements, pupillary dilation, and event-related potentials	\$615,000	Q1.Other	Johns Hopkins University	
Development of a high-content neuronal assay to screen therapeutics for the treatment of cognitive dysfunction in autism spectrum disorders	\$597,637	Q4.S.B	Massachusetts Institute of Technology	
Role of autism-susceptibility gene, CNTNAP2, in neural circuitry for vocal communication	\$573,420	Q2.Other	University of California, Los Angeles	
Development of an internet-based parent training intervention for children with ASD	\$552,530	Q5.L.A	Michigan State University	
Atypical pupillary light reflex in individuals with autism	\$515,419	Q1.Other	University of Missouri	
Abnormal vestibulo-ocular reflexes in autism: A potential endophenotype	\$510,142	Q1.L.A	University of Florida	
Mechanisms of mitochondrial dysfunction in autism	\$489,354	Q2.S.A	Georgia State University	
Improving synchronization and functional connectivity in autism spectrum disorders through plasticity-induced rehabilitation training	\$487,384	Q4.Other	University of California, San Diego	
Placental vascular tree as biomarker of autism/ASD risk	\$483,029	Q1.L.A	Research Foundation for Mental Hygiene, Inc.	
Biomarkers for autism and for gastrointestinal and sleep problems in autism	\$472,129	Q1.L.A	Yale University	
Identification of lipid biomarkers for autism	\$249,924	Q1.L.A	Massachusetts General Hospital	
The transcription factor PLZF: A possible genetic link between immune dysfunction and autism	\$142,113	Q3.Other	Memorial Sloan-Kettering Cancer Center	
Analysis of the small intestinal microbiome of children with autism	\$132,750	Q2.Other	Massachusetts General Hospital	
Systematic characterization of the immune response to gluten and casein in autism spectrum disorders	\$126,432	Q1.Other	Weill Cornell Medical College	
Novel strategies to manipulate Ube3a expression for the treatment of autism and Angelman syndrome	\$111,000	Q4.Other	University of North Carolina at Chapel Hill	
The functional link between DISC1 and neuroligins: Two genetic factors in the etiology of autism	\$110,250	Q2.S.D	Children's Memorial Hospital, Chicago	
Self-injurious behavior: An animal model of an autism endophenotype	\$107,918	Q2.S.G	University of Florida	
Immunopathogenesis in autism: Regulatory T cells and autoimmunity in neurodevelopment	\$106,609	Q3.S.F	East Carolina University	
Multiplexed suspension arrays to investigate newborn and childhood blood samples for potential immune biomarkers of autism	\$0	Q1.L.A	Centers for Disease Control and Prevention (CDC)	
A prospective multi-system evaluation of infants at risk for autism	\$0	Q1.L.B	Massachusetts General Hospital	
A prospective multi-system evaluation of infants at risk for autism	\$0	Q1.L.B	Massachusetts General Hospital	

Project Title	Funding	Strategic Plan Objective	Institution	
Characterization of the pathological and biochemical markers that correlate to the clinical features of autism	\$0	Q2.Other	Research Foundation for Mental Hygiene, Inc.	
Characterization of the pathological and biochemical markers that correlate to the clinical features of autism	\$0	Q2.Other	Research Foundation for Mental Hygiene, Inc.	
Characterization of the pathological and biochemical markers that correlate to the clinical features of autism	\$0	Q2.Other	Research Foundation for Mental Hygiene, Inc.	
Redox abnormalities as a vulnerability phenotype for autism and related alterations in CNS development	\$0	Q2.S.A	State University of New York at Potsdam	
Redox abnormalities as a vulnerability phenotype for autism and related alterations in CNS development	\$0	Q2.S.A	University of Rochester	
Redox abnormalities as a vulnerability phenotype for autism and related alterations in CNS development	\$0	Q2.S.A	Arkansas Children's Hospital Research Institute	
Etiology of sleep disorders in ASD: Role of inflammatory cytokines	\$0	Q2.S.E	University of Maryland, Baltimore	
Gastrointestinal functions in autism	\$0	Q2.S.E	University at Buffalo, The State University of New York	
Maternal risk factors for autism spectrum disorders in children of the Nurses' Health Study II	\$0	Q3.L.C	Harvard University	
Maternal risk factors for autism spectrum disorders in children of the Nurses' Health Study II	\$0	Q3.L.C	Massachusetts General Hospital	
Maternal risk factors for autism spectrum disorders in children of the Nurses' Health Study II	\$0	Q3.L.C	Harvard University	
Interaction between MEF2 and MECP2 in the pathogenesis of autism spectrum disorders -2	\$0	Q3.Other	Burnham Institute	
MeHG stimulates antiapoptotic signaling in stem cells	\$0	Q3.Other	Kennedy Krieger Institute	
Epigenetic regulation of the autism susceptibility gene, ENGRAILED 2 (EN2)	\$0	Q3.Other	University of Medicine & Dentistry of New Jersey - Robert Wood Johnson Medical School	
Interaction between MEF2 and MECP2 in the pathogenesis of autism spectrum disorders - 1	\$0	Q3.Other	Burnham Institute	
Discordant monozygotic twins as a model for genetic- environmental interaction in autism	\$0	Q3.S.C	Johns Hopkins University	
Discordant monozygotic twins as a model for genetic- environmental interaction in autism	\$0	Q3.S.C	Kennedy Krieger Institute	
Toxicant-induced autism and mitochondrial modulation of nuclear gene expression	\$0	Q3.S.F	Texas A&M University	
Developing treatment, treatment validation, and treatment scope in the setting of an autism clinical trial	\$0	Q4.L.A	University of Medicine & Dentistry of New Jersey - Robert Wood Johnson Medical School	
Developing treatment, treatment validation, and treatment scope in the setting of an autism clinical trial	\$0	Q4.L.A	University of Medicine & Dentistry of New Jersey	
Developing treatment, treatment validation, and treatment scope in the setting of an autism clinical trial	\$0	Q4.L.A	University of Medicine & Dentistry of New Jersey - Robert Wood Johnson Medical School	